博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
学习OpenCV——BOW特征提取函数(特征点篇)
阅读量:6271 次
发布时间:2019-06-22

本文共 8139 字,大约阅读时间需要 27 分钟。

没日没夜的改论文生活终于要告一段落了,比起改论文,学OpenCV就是一件幸福的事情。OpenCV的发展越来越完善了,已经可以直接使用BOW函数来进行对象分类了。

 

简单的通过特征点分类的方法:                                                                      

一、train

1.提取+/- sample的feature,每幅图提取出的sift特征个数不定(假设每个feature有128维)

2.利用聚类方法(e.g K-means)将不定数量的feature聚类为固定数量的(比如10个)words即BOW(bag of word)

(本篇文章主要完成以上的工作!)

3.normalize,并作这10个类的直方图e.g [0.1,0.2,0.7,0...0];

4.将each image的这10个word作为feature_instance 和 (手工标记的) label(+/-)进入SVM训练

二、predict

1. 提取test_img的feature(如137个)

2. 分别求each feature与10个类的距离(e.g. 128维欧氏距离),确定该feature属于哪个类

3. normalize,并作这10个类的直方图e.g [0,0.2,0.2,0.6,0...0];

4. 应用SVM_predict进行结果预测

 

 

通过OpenCV实现feature聚类 BOW                                                             

首先在此介绍一下OpenCV的特征描述符与BOW的通用函数。

主要的通用接口有:

 

1.特征点提取

Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType)

[cpp] 
 
 
 
  1.     Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType)  
  2. //  "FAST" – FastFeatureDetector   
  3. //  "STAR" – StarFeatureDetector   
  4. //  "SIFT" – SIFT (nonfree module)//必须使用 initModule_nonfree()初始化  
  5. //  "SURF" – SURF (nonfree module)//同上;   
  6. //  "ORB" – ORB   
  7. //  "MSER" – MSER   
  8. //  "GFTT" – GoodFeaturesToTrackDetector   
  9. //  "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled   
  10. //  "Dense" – DenseFeatureDetector   
  11. //  "SimpleBlob" – SimpleBlobDetector   

 

根据以上接口,测试不同的特征点:

对同一幅图像进行水平翻转前后的两幅图像检测特征点检测结果,

检测到的特征点的坐标类型为:pt: int / float(与keyPoint的性质有关)

数量分别为num1, num2,

 

 "FAST" – FastFeatureDetector           pt:int (num1:615  num2:618)

 "STAR" – StarFeatureDetector           pt:int (num1:43   num2:42 )
 "SIFT" – SIFT (nonfree module)          pt:float(num1:155  num2:135)            //必须使用 initModule_nonfree()初始化
 "SURF" – SURF (nonfree module)     pt:float(num1:344  num2:342)           //同上; 
 "ORB" – ORB                                        pt:float(num1:496  num2:497)
 "MSER" – MSER                                 pt:float(num1:51   num2:45 )
 "GFTT" – GoodFeaturesToTrackDetector        pt:int (num1:744  num2:771)
 "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled         pt:float(num1:162  num2:160)
 "Dense" – DenseFeatureDetector          pt:int (num1:3350 num2:3350)

 

2.特征描述符提取

Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType)

[cpp] 
 
 
 
  1. //  Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExtractorType)     
  2. //  "SIFT" – SIFT   
  3. //  "SURF" – SURF   
  4. //  "ORB" – ORB   
  5. //  "BRIEF" – BriefDescriptorExtractor   

 

3.描述符匹配

Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create(const string& descriptorMatcherType)

[cpp] 
 
 
 
  1. //  descriptorMatcherType – Descriptor matcher type.   
  2. //  Now the following matcher types are supported:   
  3. //      BruteForce (it uses L2 )   
  4. //      BruteForce-L1   
  5. //      BruteForce-Hamming   
  6. //      BruteForce-Hamming(2)   
  7. //      FlannBased   
  8.     Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );  

 

4.class BOWTrainer

class BOWKmeansTrainer::public BOWTrainer:Kmeans算法训练

BOWKMeansTrainer ::BOWKmeansTrainer(int clusterCount, const TermCriteria& termcrit=TermCriteria(), int attempts=3, int flags=KMEANS_PP_CENTERS)

parameter same as 

 

代码实现:                                                                                                                    

1.画特征点。

2.特征点聚类,每一种颜色代表一个类别。

 

[cpp] 
 
 
 
  1. #include "opencv2/highgui/highgui.hpp"  
  2. #include "opencv2/calib3d/calib3d.hpp"  
  3. #include "opencv2/imgproc/imgproc.hpp"  
  4. #include "opencv2/features2d/features2d.hpp"  
  5. #include "opencv2/nonfree/nonfree.hpp"  
  6.   
  7. #include <iostream>  
  8.   
  9. using namespace cv;  
  10. using namespace std;  
  11.   
  12. #define ClusterNum 10  
  13.   
  14. void DrawAndMatchKeypoints(const Mat& Img1,const Mat& Img2,const vector<KeyPoint>& Keypoints1,  
  15.     const vector<KeyPoint>& Keypoints2,const Mat& Descriptors1,const Mat& Descriptors2)  
  16. {  
  17.     Mat keyP1,keyP2;  
  18.     drawKeypoints(Img1,Keypoints1,keyP1,Scalar::all(-1),0);  
  19.     drawKeypoints(Img2,Keypoints2,keyP2,Scalar::all(-1),0);  
  20.     putText(keyP1, "drawKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));  
  21.     putText(keyP2, "drawKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));  
  22.     imshow("img1 keyPoints",keyP1);  
  23.     imshow("img2 keyPoints",keyP2);  
  24.   
  25.     Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );  
  26.     vector<DMatch> matches;  
  27.     descriptorMatcher->match( Descriptors1, Descriptors2, matches );  
  28.     Mat show;  
  29.     drawMatches(Img1,Keypoints1,Img2,Keypoints2,matches,show,Scalar::all(-1),CV_RGB(255,255,255),Mat(),4);  
  30.     putText(show, "drawMatchKeyPoints", cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));    
  31.     imshow("match",show);  
  32. }  
  33.   
  34. //测试OpenCV:class BOWTrainer  
  35. void BOWKeams(const Mat& img, const vector<KeyPoint>& Keypoints,   
  36.     const Mat& Descriptors, Mat& centers)  
  37. {  
  38.     //BOW的kmeans算法聚类;  
  39.     BOWKMeansTrainer bowK(ClusterNum,   
  40.         cvTermCriteria (CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 0.1),3,2);  
  41.     centers = bowK.cluster(Descriptors);  
  42.     cout<<endl<<"< cluster num: "<<centers.rows<<" >"<<endl;  
  43.       
  44.     Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );  
  45.     vector<DMatch> matches;  
  46.     descriptorMatcher->match(Descriptors,centers,matches);//const Mat& queryDescriptors, const Mat& trainDescriptors第一个参数是待分类节点,第二个参数是聚类中心;  
  47.     Mat demoCluster;  
  48.     img.copyTo(demoCluster);  
  49.       
  50.     //为每一类keyPoint定义一种颜色  
  51.     Scalar color[]={CV_RGB(255,255,255),  
  52.      CV_RGB(255,0,0),CV_RGB(0,255,0),CV_RGB(0,0,255),  
  53.      CV_RGB(255,255,0),CV_RGB(255,0,255),CV_RGB(0,255,255),  
  54.      CV_RGB(123,123,0),CV_RGB(0,123,123),CV_RGB(123,0,123)};  
  55.   
  56.   
  57.     for (vector<DMatch>::iterator iter=matches.begin();iter!=matches.end();iter++)  
  58.     {  
  59.         cout<<"< descriptorsIdx:"<<iter->queryIdx<<"  centersIdx:"<<iter->trainIdx  
  60.             <<" distincs:"<<iter->distance<<" >"<<endl;  
  61.         Point center= Keypoints[iter->queryIdx].pt;  
  62.         circle(demoCluster,center,2,color[iter->trainIdx],-1);  
  63.     }  
  64.     putText(demoCluster, "KeyPoints Clustering: 一种颜色代表一种类型",  
  65.         cvPoint(10,30), FONT_HERSHEY_SIMPLEX, 1 ,Scalar :: all(-1));  
  66.     imshow("KeyPoints Clusrtering",demoCluster);  
  67.       
  68. }  
  69.   
  70.   
  71.   
  72.   
  73. int main()  
  74. {  
  75.     cv::initModule_nonfree();//使用SIFT/SURF create之前,必须先initModule_<modulename>();   
  76.   
  77.     cout << "< Creating detector, descriptor extractor and descriptor matcher ...";  
  78.     Ptr<FeatureDetector> detector = FeatureDetector::create( "SIFT" );  
  79.   
  80.     Ptr<DescriptorExtractor> descriptorExtractor = DescriptorExtractor::create( "SIFT" );  
  81.   
  82.     Ptr<DescriptorMatcher> descriptorMatcher = DescriptorMatcher::create( "BruteForce" );  
  83.   
  84.   
  85.   
  86.     cout << ">" << endl;  
  87.   
  88.     if( detector.empty() || descriptorExtractor.empty() )  
  89.     {  
  90.         cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl;  
  91.         return -1;  
  92.     }  
  93.     cout << endl << "< Reading images..." << endl;  
  94.     Mat img1 = imread("D:/demo0.jpg");  
  95.     Mat img2 = imread("D:/demo1.jpg");  
  96.     cout<<endl<<">"<<endl;  
  97.   
  98.   
  99.     //detect keypoints;  
  100.     cout << endl << "< Extracting keypoints from images..." << endl;  
  101.     vector<KeyPoint> keypoints1,keypoints2;  
  102.     detector->detect( img1, keypoints1 );  
  103.     detector->detect( img2, keypoints2 );  
  104.     cout <<"img1:"<< keypoints1.size() << " points  img2:" <<keypoints2.size()   
  105.         << " points" << endl << ">" << endl;  
  106.       
  107.     //compute descriptors for keypoints;  
  108.     cout << "< Computing descriptors for keypoints from images..." << endl;  
  109.     Mat descriptors1,descriptors2;  
  110.     descriptorExtractor->compute( img1, keypoints1, descriptors1 );  
  111.     descriptorExtractor->compute( img2, keypoints2, descriptors2 );  
  112.   
  113.     cout<<endl<<"< Descriptoers Size: "<<descriptors2.size()<<" >"<<endl;  
  114.     cout<<endl<<"descriptor's col: "<<descriptors2.cols<<endl  
  115.         <<"descriptor's row: "<<descriptors2.rows<<endl;  
  116.     cout << ">" << endl;  
  117.   
  118.     //Draw And Match img1,img2 keypoints  
  119.     //匹配的过程是对特征点的descriptors进行match;  
  120.     DrawAndMatchKeypoints(img1,img2,keypoints1,keypoints2,descriptors1,descriptors2);  
  121.   
  122.     Mat center;  
  123.     //对img1提取特征点,并聚类  
  124.     //测试OpenCV:class BOWTrainer  
  125.     BOWKeams(img1,keypoints1,descriptors1,center);  
  126.   
  127.   
  128.     waitKey();  
  129.   
  130. }  

 

 

通过Qt实现DrawKeypoints:

[cpp] 
 
 
 
  1. void Qt_test1::on_DrawKeypoints_clicked()  
  2. {  
  3.     //initModule_nonfree();  
  4.     Ptr<FeatureDetector> detector = FeatureDetector::create( "FAST" );  
  5.     vector<KeyPoint> keypoints;  
  6.     detector->detect( src, keypoints );  
  7.   
  8.     Mat DrawKeyP;  
  9.     drawKeypoints(src,keypoints,DrawKeyP,Scalar::all(-1),0);  
  10.     putText(DrawKeyP, "drawKeyPoints", cvPoint(10,30),   
  11.         FONT_HERSHEY_SIMPLEX, 0.5 ,Scalar :: all(255));  
  12.     cvtColor(DrawKeyP, image, CV_RGB2RGBA);  
  13.     QImage img = QImage((const unsigned char*)(image.data),   
  14.         image.cols, image.rows, QImage::Format_RGB32);  
  15.     QLabel *label = new QLabel(this);  
  16.     label->move(50, 50);//图像在窗口中所处的位置;  
  17.     label->setPixmap(QPixmap::fromImage(img));  
  18.     label->resize(label->pixmap()->size());      
  19.     label->show();  
  20. }  

由于initModule_nonfree()总是出错,无法对SIFT与SURF特征点提取,

而且无法实现聚类因为运行/BOW的kmeans算法聚类:BOWKMeansTrainer bowK(ClusterNum, cvTermCriteria (CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 10, 0.1),3,2);总是出错,不知道咋解决~~~~~(>_<)~~~~ 需要继续学习

 

from: http://blog.csdn.net/yangtrees/article/details/8456237

你可能感兴趣的文章
Python 3.5 之路 day1
查看>>
selenium使用chrome抓取自动消失弹框的方法
查看>>
实现strStr()---简单
查看>>
只有PD号的调起
查看>>
返回一个整数数组中最大子数组的和
查看>>
leetcode(二)
查看>>
利用css实现居中的方法
查看>>
Spring + Hibernate 框架
查看>>
添加浏览器的用户样式表
查看>>
LigerUI学习笔记之布局篇 layout
查看>>
LeetCode题解(二)
查看>>
Mybatis通用Mapper
查看>>
文件磁盘命令(就该这么学6章内容)
查看>>
2016-207-19 随笔
查看>>
java的double类型如何精确到一位小数?
查看>>
看看国外的javascript题目,你能全部做对吗?
查看>>
ffmpeg 如何选择具有相同AVCodecID的编解码器 (AVCodec)
查看>>
真正解决 Windows 中 Chromium “缺少 Google API 密钥” 的问题
查看>>
Spring 之 AOP
查看>>
软件项目管理|期末复习(二)
查看>>